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On the relation between charge and topology 

Rafael Sorkin 
Department of Applied Mathematics and Astronomy, University College, PO Box 78, 
Cardiff CF1 lXL, UK 

Received 1 October 1976 

Abstract. The generalization of Stokes’ theorem to non-orientable manifolds shows that a 
suitable topology can appear to carry net electromagnetic charge. By treating this as the 
origin of electric charge in nature one explains the non-existence of magnetic monopoles. 

1. introduction 

Despite its drawbacks, the image of electric charge as nothing more than lines of force 
trapped in a multiply connected topology retains a certain attraction. According to the 
version described in Misner and Wheeler (1957) there might be a ‘handle’? joining two 
apparently distant regions of space. In the neighbourhood of one of the ends of such a 
handle one would detect a net outflux of E field, in other words (as long as one did not 
look too closely) a ‘charged’ particle. In effect, an electric monopole would be 
understood as half of an electric dipole, the other half of which is removed arbitrarily far 
from it in the apparent metric. 

On the other hand, there is no reason within electromagnetic theory why such a 
handle could not carry magnetic lines of force instead of-r in addition to-electric 
ones, leading to the existence of particles with net magnetic charge. But such particles 
have not been seen. Sometimes the existence of the vector potential is invoked to 
explain this absence, but when A is understood as a gauge field it turns out (Lubkin 
1963) that magnetic monopoles are not ruled out after all: they correspond to a certain 
topological property of the U( 1) bundle for which A,  is a connection. 

A second objection to the handle description of electric charge is of less conse- 
quence experimentally but perhaps more serious in the long run (after all, magnetic 
monopoles might be found). Namely the handle, which is hidden to coarse observation, 
establishes a connection between the two ‘charges’ corresponding to its ends even 
though these charges superficially are quite unrelated. It is hard to see how this could be 
reconciled with the quantum mechanical indistinguishability of all like charged particles 
except by introducing seemingly unnatural assumptions$. 

This last objection, at any rate, might be overcome if it were possible for the handle 
(or other suitable topology) to be a monopole rather than a dipole. Then one could 
bring its ends together to furnish a more local model of charge. The impression that this 
will not work-that topology cannot display net (apparent) electromagnetic charge- 

+ Called a ‘wormhole’ by Misner and Wheeler (1957). 
$ For example one might specify a ‘backstage’ topology which treated all the particles on the same footing; or 
one might perform some sort of quantum mechanical symmetrization over all possible backstage geometries. 
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rests on Gauss’s law: since the net flux emerging from a region equals the net charge 
within a region, and since the density of the latter is everywhere zero, the total apparent 
charge must vanish as well (as long as the region includes the whole handle so it has no 
hidden boundaries through which flux might escape). But Gauss’s law is a version of 
Stokes’ theorem which customarily is formulated only for oriented manifolds. Our first 
task therefore, is to forinulate Stokes’ theorem in the non-orientable case. 

2. Disorienting Stokes’ theorem 

Before it fell into the hands of mathematicians Stokes’ theorem looked something like 

in which daw represents the outwardly directed surface element. After reformulation in 
the language of exterior calculus it became 

where w is a totally skew covariant tensor or ‘form’. Despite the elegance of this 
version, however, it is version (1) which generalizes most naturally to the non- 
orientable case. 

The reason appears most clearly if one visualizes the theorem in terms of stationary 
fluid flow, 21w being the current vector or rather vector density, and dw21w being the rate 
of fluid creation per unit volume. The interpretation that (1) is equating the net outflux 
through aD to the total creation within D then requires that daw be the outwardly 
directed surface element. But a directed surface element corresponds to a covariant 
vector (figure l), or more properly, since 21p duw must be a scalar, to a covariant vector 
density of weight -1. 

Figure 1. Picture of do;  showing why it is suited to describe a directed surface element. 

The surface element (call it dZ) which is implicit in (2) is, in contrast, an oriented 
piece of dD. If D is itself oriented then a unique correspondence is set up between the 
internal orientation of dZ and the inward or outward direction of daw. In general 
however there is no such correspondence and no version of Stokes’ theorem in terms of 
forms. 

On the basis of the fluid picture it is intuitively clear that (1) will obtain whether or 
not D is orientable. A bit more formally, imagine that D is decomposed into cubical 
cells, for each of which (1) is readily explicitly verified. If we sum over all the cells then, 
since we use the outwardly oriented surface element on each cell, all the boundary 
integrals cancel save on aD itself. The result is precisely (1). 
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Finally, we can even salvage (2) by a slight re-interpretation, First notice that we can 

(3) 

where E is the alternating symbol = +l). This, however, is not a true (‘polar’) 
tensor but an axial one: it transforms with an extra minus sign under reflection. It is 
easy to check that, with this definition of dX, (2) will reduce to (1) if w is the axial form 

still associate to da;, the expression t 
dZ”@Y := dvw 6 papy 

wapy  = lXP€*LaPy * (4) 

We conclude that (2) will always be true as long as one uses axial, rather than polar, 
forms and surface tensors. 

In fact it is not hard to conclude this directly granted that any non-orientable version 
of (2) which is well defined should be true. To show directly why our re-interpreted (2) 
is in fact well defined-and also as preparation for our final generalization of Stokes’ 
theorem-it is convenient to present the notion of axial tensor in a more coordinate- 
free way. 

An orientation for a vector space is a choice of one of the two disconnected classes of 
tetrads (or ‘n-ads’ if n # 4 )  in that space. An orientation at a point of the manifold M i s  
a choice of orientation for the tangent space T,M at x .  An axial tensor may be thought 
of as a tensor which only assumes a value once an orientation has been specified, and 
changes sign when the orientation switches. (Similarly for a tensor density of weight w.) 
This is, in fact, exactly what one does when, by means of the ‘right-hand rule’, one treats 
the magnetic field as a vector. 

Now, if we make explicit the volume element in (2), the volume integral appears as 

I d o . d I  

in which dZ = dICIYa@ should be axial since it can become a tensor only relative to an 
orientation for the volume element it represents. For the integrand to make sense 
independently of the orientation chosen for dZ it is thus necessary only that w, and 
therefore dw, be axial as well. Similarly, the (outwardly directed) element d3Z of aD 
becomes an oriented surface tensor once an orientation for D is specified locally, so that 
again the relative sign between it and the axial form w is independent of the choice of 
overall orientation. 

To summarize: by working locally and choosing a local orientation we turn (2) into 
the usual Stokes’ theorem. But by proper definitions of w, dZ, we make both integrands 
independent of this choice, whence there is no need to be able to make it consistently 
throughout D. 

Until now we have been treating D as the whole space under consideration. But 
when D is, e.g., part of a space-like hypersurface H, the physical fields will be tensors 
defined in the space-time, M, in which H is embedded, and one needs a Stokes’ theorem 
expressed in terms of these fields. 

Unfortunately, a result of the type we seek is not always available in M. To see why 
this is and what extra condition is needed, consider the Mobius strip, K,  with its usual 
embedding in R3. The ‘volume’ integral over K would have to be of the form 

t I doik d2Cik 

t For definiteness we write all formulae for a four-dimensional D. 
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where w and dzZ are to be R3 tensors. But this is impossible since in circling the strip, 
d2Z changes sign whereas dw does not. Thus the integrand changes sign, which is 
absurd. It is impossible to avoid this problem because the sign change in d2Zik comes 
from a continuous rotation in R3 and happens whether d2Z is axial or polar. Therefore 
Stokes’ theorem for an embedded manifold cannot be formulated in the general case. 

Clearly the problem is that the Mobius strip is one-sided. To avoid this we require 
that our submanifold K be externally orientable in M-i.e. that there be a choice 
consistent for all x in K of orientation for Tx(M)/Tx(K),  the quotient of the tangent 
spaces. 

Assuming this, we can reduce the ‘embedded’ Stokes’ theorem to the case we have 
just discussed. Although it would be more natural to work with densities as in (l), it is 
quicker to base our extension on (2) (in its generalized form). In the following the 
notation assumes a three-dimensional K embedded in four-dimensional M. 

If Vis a (finite-dimensional) vector space and W a subspace then orientations for W 
and V/ W, which we will call respectively internal and external orientations for Win  V, 
imply one for V in an obvious way. Or  if we are given an orientation for V/ W then 
orienting V is equivalent to orienting W. Applying this to W =  T,K and V =  T,M 
shows that, assuming that K c M  is externally oriented, an orientation for TxM is 
equivalent to one for TxK. Thus the orientation which is needed in order that the axial 
form w ‘assume a value’ can be taken as that of T,K rather than that of TxM, whence w 
restricted to K becomes an axial form on K. Since, further, restriction to K commutes 
with exterior differentiation, both sides of 

3 1 I,, w,, dZ”“ = J b dwapy dZaPY 
K 

can be evaluated in terms of intrinsic quantities in K, so that ( 5 )  reduces to ( 2 )  (with 
‘D’+ ‘K’) and is thereby proved. On the other hand, by the same logic the elements 
dZ”” and d Y P Y  can be construed as tensors in M so that ( 5 )  becomes the generalization 
we were seeking. 

Theorem. Let K be a p-dimensional compact manifold with boundary which is 
externally oriented as a submanifold of M Let dPZ (or dp-’Z) be the volume element of 
K (or of aK outwardly directed) interpreted as an axial tensor in M by virtue of the 
orientation hypothesis. Then 

f, w .  dP-’Z = dw . dPZ I, 
for an axial Cp - 1)-form w defined on M. 

If we re-interpret this in terms of (polar) densities it reads 

‘ U . d u = \  d i v 8 , d u .  
dK K 

(7) 

In particular, when p = dim M -  1 
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3. Why are there no monopoles? 

Let M be a time-oriented space-time and H a space-like hypersurface. H is thus 
externally oriented in MO To say that some topological feature T of H displays net 
charge is to say that net flux emerges through a sphere S ‘enclosing’ this feature. By 
discarding that part of H outside of S we get a compact three-manifold, K, whose 
boundary is precisely S (which is what it means to say S encloses 7‘) and questions about 
a charge displayed by T reduce to ones about the total flux emerging through S (figure 
2). 

H - K  / 
Figure 2. 

Consider first the (apparent) electric charge 

Q = f  1 2sw dcFv 
S 

(9) 

where du,, has outward orientation in K and F’I” = Ppu/d-  g is the Maxwell field, 
which we provisionally take, in accord with tradition, to be a polar (‘true’) tensor. 

According to Stokes’ theorem (8), Q is 

gWv,” du, (10) 

the vanishing of whose integrand is one of Maxwell’s equations. It follows that T cannot 
display net electric charget. 

On the other hand the net (apparent) magnetic charge is given by 

QM = f *.W” do,,, 
S 

where *.5FF” = &””“’Fap/./-g is the dual of .FWLy, and as such an axial rather than apolar 
tensor density. Now (1 1) still makes sense as a definition because, if we stay away from 
T, space appears orientable and we can adopt, say, the right-hand rule for defining B in 
H -  K. However we can no longer prove QM = 0 in general because Stokes’ theorem 
does not apply to the axial density *P@” when K is non-orientable. 

In terms of the three-dimensional quantities E, B we can express the situation as 
follows. For the polar vector E Gauss’s law obtains with the consequence that the net 
electric charge displayed by T must vanish. For the axial vector B Gauss’s law cannot be 
formulated properly when K is non-orientable, with the consequence, as we shall see, 

f An analogous argument based on  the Komar stress-energy tensor shows that in a stationary time-oriented 
vacuum the net mass associated with any space-like hypersurface vanishes. 
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that T can display magnetic charge. This is exactly wrong! Recall, however (see also 
0 5 ) ,  that the traditional identification of (E as the polar one of the pair (E, B is purely 
conventional. Henceforth we shall switch the roles of E and 5 by treating F,, as an axial 
tensor (*FfiY becoming the polar tensor) so that, in better accord with experience, the 
above situation is reversed, and it is magnetic monopoles which are excluded. 

4. An electrically charged handle 

So far we have shown that? no topology can display net magnetic charge. (Remember, 
B is now the polar vector.) To make the discussion more concrete we present a 
particular topology which can carry electric charge (figure 3). The space-time topology 

Figure 3. A topology which can display net electric charge. 

in question is of the form R x H  and has for spatial cross section, H, the ‘handle’ 
produced by removing from R3 a pair of balls of equal radius and identifying those 
points on their surfaces which correspond under translation. To see that this topology is 
non-orientable consider carrying a triad e l ,  e2 ,  e3 (of which only two vectors are shown) 
through the handle from P’ to P”. The ‘transverse’ vectors e2 ,  e3  will retain their 
direction but e l ,  since its head must emerge from the handle before its tail (which 
entered later), will reverse itself, thereby reversing the orientation of the triad. 

Now suppose (figure 4) that the S’ end of the handle carries an apparent electric 
charge of :Q-in other words that a flux of +iQ (relative to the right-handed 
orientation at infinity) emerges through S’. By pulling the surface S’ through the handle 
to S” we sweep out a three-volume V on which, since it is orientable, we can apply 
Stokes’ theorem$ to E’ = 9”. In terms of V therefore the (outward) fluxes of E through 

t Assuming time-orientability. 
e It is clearer to talk in three-dimensional terms. As shown above there is a perfectly equivalent formulation 
in terms of the four-tensor 3’’”. The sign of E is, of course, relative to the given time orientation. Notice by 
the way, that one can check directly that the value of sso’ is unchanged by any coordinate transformation 
which reduces to the identity on the hypersurface H. 
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/ I 

I 
I 

Figure 4. In charged particle models S would enclose a region of microscopic size. 

S‘ and S” are equal and opposite. But if V is oriented to agree with the outside 
orientation at S’ it will disagree with the latter at S .  In terms of the outside orientation, 
then, both ends of the handle display the same charge. The handle as a whole displays 
charge 10 + = 0. 

Figure 5 is intended to show, using geometrical pictures of polar and axial vectors, 
why it is that the charges, which cancel in one case, reinforce each other in the other. 

/ P p  
,/ P/P  ( a )  l b )  

Figure 5. ( a )  Axial flux E. Apparent charge by right-hand rule. ( b )  Polar flux 5; net 
apparent charge vanishes. 

5. Speculation 

The handle of 0 4 is only one of an infinite number of ‘quasi-localizable’ topologies 
capable of displaying electric charge. If, in accord with the discussion of 0 1, one treats 
such topologies as the origin of charged particles, one explains immediately the absence 
of magnetic monopoles (0 3). One even gets a sort of model for a charge-exchange 
reaction by considering what happens if one end of a handle passes through a second 
handle (figure 6). 
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Figure 6. A charge exchange reaction between two handles like that of figure 3 .  

If the B‘ end of handle B passes through the non-orientable handle A, as shown, 
then, as a bit of thought will verify, the orientation of B‘ is reversed relative to B”. In 
other words B changes from a non-orientable to an orientable handle, or vice versa. But 
if B becomes orientable it no longer can display a net charge, which must mean an 
acquisition of B’s charge by A.  And this is exactly the conclusion one reaches by tracing 
through the fate of electric lines of force, as represented, e.g., in figure 5(a).  In fact the 
result was inevitable once we treated E as an axial density and therefore QE as an axial 
scalar. When such a quantity undergoes spatial reflection (as does the charge of B’ by 
passing through A) its sign changes. 

Still more wildly we could speculate that perhaps one could create magnetic 
monopoles after all by providing enough energy to pull apart the ends of a magnetic 
dipole handle (not that we know what holds the ends together in the first place!), all of 
which ignores possible counteracting quantum mechanical creation of dipole handles, 
etc. But it seems more prudent to underline some serious objections to this whole, so 
far essentially classical, picture of charge. 

In the first place, it is not clear how half-integral spin (not to speak of quantum 
mechanics in general) will fit in. Furthermore, known classical solutions of the 
initial-value equations such as the Reissner-Nordstrgm metric which requires Q < M 
are incapable of attaining anything like the e lm ratios occurring in real particles, which 
are of the order of 10’’ in natural units. It may be that such a ratio is impossible in 
principle without singular metrics. 

Finally there is one objection which can be answered concerning whether the 
assignment of axial character to E rather than B is contradicted by experiment. Of 
course, it may well be that CP non-invariance requires spatial orientability, which 
would dispose entirely of the charged handle hypothesis. But even if we neglect this 
problem (perhaps by recourse to the ideas of Lee 1974, on restoring CP symmetry) 
there is the question of whether, for example, the observed reflection invariance of 
quantum electrodynamics is compatible with an axial E. Does not the e&y5,$A, 
coupling become parity violating if A,  becomes axial? 

The answer, of course, is that the current, &”@, also becomes an axial quantity: in 
effect the parity operation becomes what is usually called CP; there are still two 
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invariances (neglecting T) but they correspond to CP and C, rather than P and C, of the 
usual scheme?. 
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